
Finding Bug by using Data Reduced Techniques
Amruta Gadekar1 , Pranjali Taralkar 2, Nikita Waghmare3, Rahul Dapke 4

 1Asst.Professor,Department of CE,Pune University,India
2,3,4BE.Student,Department of CE,Pune University,India

Dr.D.Y.Patil Institute of Engineering and Technology Ambi,Pune,India

Abstract— Software companies spend maximum percent of cost in
negotiating with software bugs which aims to classify bugs and
assign a developer to a new bug. To reduce the time cost in
manual work, text classification techniques are applied to
conduct automatic bug triage. In FB by using DRT, we address
the problem of data reduction for bug triage, i.e.,how to reduce
the scale and improve the quality of bug data. We combine
instance selection with feature selection to simultaneously
reduce data scale on the bug dimension and the word dimension.
To determine the order of applying instance selection and
feature selection, we extract attributes from historical bug data
sets and build a predictive model for a new bug data set. The
results show that our data reduction can effectively reduce the
data scale and improve the accuracy of bug triage. Our work
provides an approach to leveraging techniques on data
processing to form reduced and high-quality bug data in
software development and maintenance.

Keywords—bug repositories, bug triage, bug data
reduction,feature selection, instance selection

I.INTRODUCTION

In bug repository bug is maintained as bug report which
reports the texual description of reproducing the bug and
updates according to status of bug fixing.Bug repository
provides data platform to support many types of tasks on
bugs. There are two challenges related to bug data namely
the large scale and the low quality [1],[3]. On one hand, due
to the daily-reported bugs, a large number of new bugs are
stored in bug repositories. Taking an open source project,
Eclipse, as an example, an average of 30 new bugs are
reported to bug repositories per day in 2007; from 2001 to
2010, 333,371 bugs have been reported to Eclipse by over
34,917 developers and users[4].It is a challenge to manually
examine such large-scale bug data in software development
.
 Due to the large number of daily bugs and the lack of
expertise of all the bugs, manual bug triage is expensive in
time cost and low in accuracy.Bugr eportsare vital for any
software development. Theyallow users to inform
developers of the problems encountered while using a
software.for open source large-scale software projects, the
number of daily bugs is so large which makes the triaging
process very difficult and challenging [2]. To avoid the
bugs of a softwares, we empirically examine the results of
instance selection algorithms and feature selection
algorithms.

 Section II describe background and Section III describes
the system architecture of the proposed system. The details
of instance selection, feature selection, historical data use
and graph module is given in Section IV implementation
and concluded in Section V.

II.BACKGROUND

 Once a software bug is found, a reporter (typically a
developer, a tester, or an end user) records this bug to the
bug repository. A recorded bug is called a bug report, Once
a bug report is formed, a human triager assigns this bug to a
developer, who will try to fix this bug. This developer is
recorded in an item assigned-to. The assigned-to will
change to another developer if the previously assigned
developer cannot fix this bug. The process of assigning a
correct developer for fixing the bug is called bug triage. A
developer, who is assigned to a new bug report, starts to fix
the bug based on the knowledge of historical bug
fixing.Typically, the developer pays efforts to understand
the new bug report and to examine historically fixed bugs
as a reference (e.g., searching for similar bugs and applying
existing solutions to the new bug.Existing work employs
the approaches based on text classification to assist bug
triage, e.g.,[7] In such approaches,the summary and the
description of a bug report are extracted as the textual
content while the developer who can fix this
 bug is marked as the label for classification.It gives low
accuracy.
A. The Lifecycle of a Bug Report
 Bugs move through a series of states over their
lifetime.We illustrate these states using the life-cycle of a
bug report for the Eclipse bug project (Figure 1). Other
projects vary slightly from this model. We describe such
differences when necessary later in the paper.When a bug
report is submitted to the Eclipse repository,its status is set
to NEW. Once a developer has been either assigned to or
accepted responsibility for the report, the status is set to
ASSIGNED. When a report is closed its status is set to
RESOLVED. It may further be marked as being verified
(VERIFIED) or closed for good (CLOSED). A report can
be resolved in a number of ways; the resolution status in the
bug report is used to record how the report was resolved. If
the resolution resulted in a change to the code base, the bug
is resolved as FIXED. When a developer determines that
the report is a duplicate of an existing report then it is
marked as DUPLICATE. If the developer was unable to
reproduce the bug it is indicated by setting the resolution
status to WORKSFORME. If the report describes a
problem that will not be fixed, or is not an actual bug, the
report is marked as WONTFIX or INVALID, respectively.
A formerly resolved report may be reopened at a later date,
and will have its status set to REOPENED.

B. Interactions with Bug Reports
 People play different roles as they interact with reports in
a bug repository. The person who submits the report is the
reporter or the submitter of the report. The triager is the

Amruta Gadekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4263-4265

www.ijcsit.com 4263

ISSN:0975-9646

person who decides if the report is meaningful and who
assigns responsibility of the report to a developer. The one
that resolves the report is the resolver. A person that
configure 2: A sample Bugzilla bug report from
Eclipse.Table 1: Daily bug submissions around and after
product release.Around Release After Release Mean Min
Max Mean Min Max Eclipse 48 1 192 13 1 124 Firefox 8 1
37 5 1 37 tributes a fix for a bug is called a contributor. A
contributor may also contribute comments about how to
resolve a bug or additional information that leads to the
resolution of a report.A person may assume any one of
these roles at any time.For example, a triager may resolve a
report as the duplicate of an existing report. Alternatively, a
developer may submit a report, assign it to himself,
contribute a fix, and then resolve the report. For that report,
a single person has fulfilled all the roles.

Figure 1: A sample Bugzilla bug report from Eclipse.

III. SYSTEM ARCHITECTURE

Fig. 2. Illustration of reducing bug data for bug triage is :

a)Bug Triage-It describe the framework of existing work on
bug triage. b)Bug Data Reduction – it combines the
techniques of instance selection and featue selection to
reduce scale of bug data.

A. Bug Triage

 The goal of bug triage is to assign a new-coming bug to
the correct potential developer. In bug triage,a bug data set
is converted into a text matrix with two dimensions, namely
the bug dimensions and word dimension.

B. Data Reduction for bug triage

 Bug data reduction to reduce the scale and to improve the
quality of data in bug repositories. Which is applied as a
phase in data preparation of bug triage. We combine
existing techniques of instance selection and feature
selection to remove certain bug reports and words.

IV. IMPLEMENTATION

A. Instance selection
 Instance selection is a technique to reduce the number

of instances by removing noisy and redundant instances[5].
By using this technique original data sets are reduced by
removing non-representative instances.

 For a given data set in a certain application, instance
selection is to obtain bug reports in bug data

B. Feature selection
 Feature selection aims to obtain a subset of relevant
features (i.e., words in bug data). It is a preprocessing
technique used for selecting a reduced set of features for
large Scale data sets[6].
 In our work we leverage the combination of Instance
selection and Feature selection to generate a bug data set.

C . Graph Module
 This module show’s four part’s as follow:
1) Firstly it will show how many bugs are not assigned to

any developer. It will give complete status about the
bugs to the admin so that he will come to know which
bugs are not assigned yet.

 2) Secondly it will show how many bugs are not assigned
to any developer. It will give complete status about the
bugs to the admin so that he will come to know which
bugs are assigned.

3) Thirdly it will show how many bugs are rectified by the
developer’s. It will give complete status about the bugs
to the admin so that he will come to know which bugs
are rectified completely.

 4) Fourthly it will show how many bugs are not rectified
by the developer’s. It will give complete status about
the bugs to the admin so that he will come to know
which bugs are not rectified yet.

Amruta Gadekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4263-4265

www.ijcsit.com 4264

V.SYSTEM ANALYSIS

1) we present the problem of data reduction for bug triage.
This problem aims to augment the data set of bug triage in
two aspecs, namely

a) To simultaneously reduce the scales of the
bug dimension and word dimension

b) To improve the accuracy of bug triage.
2) We propose a combination approach to addressing the
problem of data reduction. This can be viewed as an
application instance selection and feature selection in bug
repositories.
3) We build a binary classifier to predict the order of
applying instance selection and feature selection. To our
knowledge the order of applying instance selection and
feature selection has not been investigated in related
domains.

VI. CONCLUSIONS
In this paper we have focused on minimizing bug data set

in order to have less scale of data and quality data. Our
work provide an approach to leverging technique to form
reduced and high quality bug data in software development
and maintaince. Our experimental results showed that this
data reduction technique will give quality data as well as it
will reduce the data scale.

In future work, we plan on improving the results of data
reduction in bug triage to explore how to prepare a high
quality bug data set and tackle a domain-specific software
task and we want to investigate effect of other term
selection methods.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.

[2] Mamdouh Alenezi and Kenneth Magel, Shadi Banitaan “Efficient
Bug Triaging Using Text Mining” © 2013 academy publisher

[3] J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage: Recommenders for development-oriented decisions,”
ACMTrans. Soft. Eng. Methodol., vol. 20, no. 3, article 10, Aug.
2011.

[4] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 25

[5] V. Cerver_on and F. J. Ferri, “Another move toward the minimum
consistent subset: A tabu search approach to the condensed nearest
neighbor rule,” IEEE Trans. Syst., Man, Cybern., Part B, Cybern.,
vol. 31, no. 3, pp. 408–413, Jun. 2001.

[6] A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient greedy feature
selection for unsupervised learning,” Knowl. Inform. Syst., vol. 35,
no. 2, pp. 285–310, May 2013.

[7] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with tossing graphs,” in Proc. Joint Meeting 12th Eur. Softw. Eng.
Conf. 17th ACM SIGSOFT Symp. Found. Softw. Eng., Aug. 2009,
pp. 111–120.

Amruta Gadekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4263-4265

www.ijcsit.com 4265

